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Using a high-resolution planning model of the Great Britain power system and 25 years of simulated
wind and PV generation data, this study compares different methods to reduce time resolution of energy
models to increase their computational tractability: downsampling, clustering, and heuristics. By com-
paring model results in terms of costs and installed capacities across different methods, this study shows
that the best method depends heavily on input data and the setup of model constraints. This implies that
there is no one-size-fits-all approach to the problem of time step reduction, but heuristic approaches
appear promising. In addition, the 25 years of time series demonstrate considerable inter-year variability
in wind and PV power output. This further complicates the problem of time detail in energy models as it
suggests long time series are necessary. Model results with high shares of PV and wind generation using a
single or few years of data are likely unreliable. Better modeling and planning methods are required to
determine robust scenarios with high shares of variable renewables. The methods are implemented in
the freely available open-source modeling framework Calliope.

Copyright © 2017 The Author. Published by Elsevier Ltd. Open Access Article licensed CC-BY 4.0 
(https://creativecommons.org/licenses/by/4.0/)
1. Introduction

Energy system models were first developed in the 1970s by the
International Energy Agency (IEA) and the International Institute
for Applied Systems Analysis (IIASA) in the aftermath of the inter-
national oil crisis. Using optimization methods, in particular linear
programming, they allowed analysts to structure their assump-
tions and data, forming them into internally coherent scenarios
of how energy is extracted, converted, transported, and used, and
how these processes might change in the future. Today, with the
increasing deployment of variable renewable generation, the glo-
bal energy system is again undergoing a fundamental transition.
Global installed wind power capacity reached about 417 GW in
2015, up from 17 GW in 2000, while solar photovoltaics (PV) has
experienced an even higher growth rate, with capacity rising from
below 1 GW in 2000 to 222 GW in 2015 globally [1]. Energy mod-
els are important decision-making aids to help navigate the trans-
formation of the current fossil-fuel based energy system to one
based on clean and renewable energy [2].

In this context, the rising importance of variable renewable
generation has presented two crucial and related problems to
energy modelers. The first problem is procuring data on the
generation potential for wind and PV power with sufficient resolu-
tion in space and time, then integrating this data into power sys-
tem models such as LIMES-EU [3] or larger energy system
models such as TIMES and TIAM [4]. Having data with temporal
resolution of one hour or better allows a model to depict the
hour-by-hour and day-by-day fluctuations in power output from
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these technologies, how they correlate with each other and with
power demand [5]. The second problem pertains to the inter-
annual variability of renewable generation, which requires many
years of data to fully address. Recent work has started to address
the first problem but in the main, studies are limited to a single
or a small number of years [6–9]. The provision of longer time ser-
ies requires input data ideally spanning multiple decades. This is
becoming possible through the use of global reanalysis data for
energy modeling [10,11].

Both of these problems overlap in one crucial area: for large
models to be computationally tractable, it is often not feasible
for them to include full hourly time series for an entire year,
let alone for several decades. This is primarily due to the
computational requirements of running what are often linear or
mixed-integer optimization models. Work has started to emerge
investigating ways to reduce the number of time steps in models
while retaining relevant detail, primarily by using statistical
clustering methods to derive a set of typical days or weeks from
a larger input time series, then feeding those days into an energy
model [12–15]. However, there are well-known limitations to sta-
tistical clustering methods, including the fact that most methods
produce clusters even in homogeneous datasets, and that clusters
must be validated and their stability assessed [16]. This implies
that approaches may vary in performance in different years, and
that specific approaches are more or less suitable depending on
the structure of the underlying model.

This paper treats this problem systematically, by examining dif-
ferent techniques to reduce the time resolution of energy models
and their impact on model performance and results, and by doing
so, answers two questions. First, how accurate are different meth-
ods to reduce time resolution when compared on the same model
and with different model configurations? Second, how can time
resolution be reduced in the most efficient way while maintaining
scientific accuracy? The rationale when reducing the number of
time steps is to balance improved computational performance with
model accuracy. This study compares different approaches to
achieve this, including downsampling, statistical clustering meth-
ods, and heuristic selection of specific days and weeks. Wind and
solar generation show significant inter-annual variability, so
multi-decade time series data should ideally be used to represent
the full range of this variability [11,10]. This further complicates
the answers to the two questions posed above: when considering
power systems with very high shares of variable renewable gener-
ation, it is necessary to also consider whether the differences in
accuracy between different time resolution reduction approaches
persist across different years or when examining multi-decade
time series. The analysis is performed with a model of the UK
power system based on the open-source Calliope high-resolution
modeling framework [8].
2. Background

Table 1 gives a stylized overview of the ways in which temporal
resolution has been included in energy models in order of increas-
ing detail (spatial resolution is included for completeness, but this
paper focuses on temporal resolution). With the displacement of
traditional power generation by variable renewables expected to
increase, energy modelers have been moving downwards in this
table from lower to higher resolutions. Approaches such as average
availabilities for technologies, which were sufficient when model-
ing baseload or completely dispatchable generators such as coal or
nuclear power, have been replaced with more explicit treatment of
time. However, this more explicit treatment comes at a computa-
tional cost. Assuming a model with a single year of 8760 hourly
time steps, 20 technologies (such as wind generation or electric
heating), 20 locations and 5 time-dependent constraints (such as
maximum power generation per location, storage charging, and
discharging), more than 17 million total constraints would result.
Reducing such a model’s size by one or two orders of magnitude
by reducing the number of time steps brings with it a concomitant
reduction in computational complexity, and thus in required CPU
time and memory requirements to solve it.

There are broadly two ways to explicitly include temporal detail
in energy models without including full time series data. The first
is time slices, that is, a reduced set of time steps chosen to charac-
terize key aspects of temporal variability, for example by covering
weekdays and weekends, different times of day, and different sea-
sons. For example, four seasons with four times per day for both
weekdays and weekends would result in 32 time slices. Large
energy system models such as TIMES generally use time slices
e.g., [19,20]. The second way is representative of typical days (or
longer time periods) extracted or artificially constructed from full
time series. Typical days are an intermediate step on the path
towards full time series: selecting a number of specific days from
the data covering as much variability as possible, or constructing
synthetic days by clustering the data. In both cases the goal is to
preserve the relevant statistical properties of the time series and
thus minimize impact on model results.

Two problems arise when reducing the resolution of model
input time series: concurrency and continuity. It is important that
correlation between events is realistic in an energy model, for
example, a stormy winter day may induce higher heating demand,
reduce PV power output to almost zero, but provide above-average
wind power production. A concurrency problem arises when a sub-
set of typical heat demand days are mixed with a subset of typical
wind production days and such correlations are lost. This can be
circumvented by ensuring that an internally consistent set of input
data is used across the entire model. The second problem is that of
continuity and appears when there is a state in a model that needs
to carry over from one time step to the next. The prime example of
this is the state of charge of storage facilities. Ensuring continuity
between time steps can be difficult to address when picking repre-
sentative days, so recent approaches have often used groups of
consecutive days [14]. Selecting days should take into considera-
tion a statistical measure of representativeness, as a selection
based on a typical (e.g. seasonal basis) has shown to be inferior
for high shares of variable renewables [21].

Statistical clustering is a way to group samples into groups
called clusters, such that the similarity of samples within a cluster
is higher than between clusters. It can be used to select represen-
tative time periods, and has been applied in particular when study-
ing demand profiles and to estimate load profiles where data is
limited. Rhodes et al. [22] use the k-means clustering technique
to group homes with similar hourly electricity demand profiles
and use regression to determine which variables influence demand
in a cluster. Similar clustering approaches for electricity demand
were also used in Räsänen et al. [23] and McLoughlin et al. [24].
Green et al. [12] use k-means clustering for power demand in a
mixed-integer Great Britain (GB) power system dispatch model
written in GAMS, for one year at a time over the 12 years in the
period 1994–2005, reporting no more than around 1% model error
in system-wide power costs but a model speedup of a factor of
about 60 when using their clustered demand data. Clustering has
also been used for more than just demand data. Heuberger et al.
[15] use the k-means clustering approach reported in Green et al.
[12] for demand and for wind and solar production in a cost-
optimizing mixed-integer GB power system planning model,
reporting about a 0.6% error in system-wide cost results and a 4%
error in technology-specific costs when comparing to unclustered
data. Baringo and Conejo [25] compare the use of load duration
curves and k-means clustering for an efficient representation of



Table 1
Main approaches to include temporal detail in energy models with an indication of the order of magnitude of resolution in time. LDCs = load duration curves. Time step resolution
is typically hourly or higher for time slices, typical days, or full time series.

Time steps Time resolution Spatial correlation Temporal correlation Example

Average availabilities/ LDCs 1–10 Monthly-yearly No No LEAP [17]
Time slices 10–100 Hourly-daily No No TIMES [4]
Typical days or weeks 100–1000 Hourly Method-dependent Method-dependent LIMES-EU [3]
Full time series >1000 Hourly and better Yes Yes RREEOM [18]

1 calliope.readthedocs.io.
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the spatial correlation between wind generation and power
demand for investment planning purposes, finding that k-means
clustering is more accurate than load duration curves, as it can
depict the correlation between different locations. Mena et al.
[26] use hierarchical clustering to speed up a differential evolution
algorithm for the optimal design of a distributed renewable gener-
ation system. Similarly, Nahmmacher et al. [14] use hierarchical
clustering of time steps using input data from the ERA-Interim
reanalysis for 1979–2011 for the long-term European power sys-
tem planning model LIMES-EU, a cost-minimizing linear optimiza-
tion model. They find that 6 representative days covered by 48 3-
hourly time slices are sufficient when comparing to 100 represen-
tative days, with total system costs just 4% lower.

Clustering is not the only possible method to reduce time reso-
lution and other work has taken different approaches. For example,
Poncelet et al. [13] present an optimization approach to selecting
time steps. Samsatli and Samsatli [27] hierarchically decompose
the complete time series into slices of different granularity, in a
refinement of the time slice approach used in models like TIMES.
Hsu [28] summarizes recent work on clustering to identify groups
of electricity consumers, and is the only recent study to assess two
different methods with respect to prediction accuracy and cluster
stability: k-means and clusterwise regression. He finds that k-
means clustering results in relatively stable clusterings, but poorer
predictive accuracy compared to clusterwise regression, conclud-
ing that given this varying accuracy, appropriate clustering meth-
ods must be identified for particular use cases. Parpas [29]
argues that for energy systems, reducing a problem to typical
states, such as an average winter evening demand, is an oversim-
plification, and that by using typical states, a model ends up under-
estimating the energy system’s true costs. On the other hand, Ludig
et al. [30] showed that with higher time step resolution, a long-
term energy model for part of the German power grid computes
higher overall system costs, but the effect of this on climate miti-
gation costs was negligible. One can conclude that the necessity
to use hourly rather than lower-resolved (6, 12, and 24-hourly)
time series data when considering high shares of renewables
depends on the research question being answered.

While there is a recent wealth of work using various methods to
reduce time resolution in energy models, this work leaves open the
question of appropriateness of different methods for different
model configurations and whether some approaches could achieve
accuracy with less detail. Most past work does not motivate the
choice of a specific method of reducing time resolution versus
the many available options. There are therefore two open ques-
tions. First, how accurate are different methods to reduce time res-
olution when compared on the same model and with different
model configurations? Second, how can time resolution be reduced
in the most efficient way, balancing accuracy and data? Also, most
past work has not assessed systems with very high shares of vari-
able renewable generation, but such systems are vulnerable to the
significant inter-annual variability of the renewable resource [10].
Thus it is also necessary to consider whether differences in
accuracy between time resolution reduction approaches persist
across different years or when examining multi-decade time series.
This final point leads from modeling problems (dealing with data
volume and model size) to planning problems (planning power
systems with high shares of renewables given the inter-year
weather variability and resulting wind and PV power variability).
3. Methods

3.1. Model and data

This analysis uses a cost-minimizing linear optimization model
that can determine installed capacity, power plant dispatch, trans-
mission line capacity and use between model zones using net
transfer capacities, line losses, storage capacity and charging/dis-
charging, based on the Calliope energy modeling framework [8].
The model determines installed capacities while simultaneously
establishing the hour-by-hour operation of all plants. In all model
runs, plant capacity is decided simultaneously for all units without
consideration of different planning horizons or deployment over
time. The basic structure of Calliope was derived from the power
nodes modeling framework [31] and uses a model formulation
based on nodes defined by a set of technologies and locations, with
nodes able to supply, store, transmit, or demand energy depending
on the constraints specified by the defined technologies. The model
balances electricity supply and demand across the modeled sys-
tem. The structure is described in more detail in Pfenninger and
Keirstead [8] and in the Calliope documentation.1 Calliope reports
levelized costs of electricity (LCOE) for each technology by account-
ing for both construction and operational costs. System-wide LCOE
are computed by a production-weighted average of all technology-
specific LCOEs, including those of transmission and storage technolo-
gies. The objective function is to minimize total system cost, so all
decisions, including power plant dispatch or storage operation, are
taken from the perspective of a central planner with perfect
information.

The model used for this study is based on a modified version of
the 20-zone GB power system model from Pfenninger and Keirst-
ead [8] (see Fig. 1). The zones are based on the National Grid trans-
mission system [32], with transmission constraints between the
zones derived from data on power flows across their boundaries
[33]. The technologies considered are onshore wind, offshore wind,
PV, hydro, pumped hydro and battery storage. To simplify the
model used, non-renewable generation is represented by two tech-
nologies: baseload (with higher capital costs and lower operating
costs) and dispatch (with lower capital but higher operating costs).
No capacity additions for hydro or pumped hydro are allowed.
These simplifications allow focusing on the key characteristics of
interest for this study: high shares of wind and PV power and
the effect of different methods to reduce time step resolution on
model results.

The Calliope framework was designed for high resolution data
in space and time. This analysis uses high resolution in time, with
25 years of hourly time series data for wind and PV generation.
These data are obtained using the extensively validated Renew-
ables.ninja PV and wind simulation methods [10,11]. Wind power

http://calliope.readthedocs.io


Table 2
Methods to reduce time resolution.

Method Key parameters Normalized Weighted

Downsampling Resolution Yes No
Heuristic

selection
Selection method; resample or
drop

Yes Yes

K-means
clustering

Defining observations; No. of
clusters; centroids or closest
days

Yes Yes

Hiearchical
clustering

Defining observations; No. of
clusters; centroids or closest
days

Yes Yes

Combination
of methods

Chosen methods and their
parameters

Yes Yes

Fig. 1. Model zones; from Pfenninger and Keirstead [8].
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is obtained with the Virtual Wind Farm model [11] by extrapolat-
ing wind speeds from the NASA MERRA reanalysis [34] to a hub
height of 80 m, then simulating power production using aggre-
gated power curves of the UK’s five most common turbine models
[35]. 1 MW offshore and onshore farms are simulated at each off-
shore/onshore MERRA grid point [8] and the resulting time series
are averaged to the 20 model zones. PV production is calculated
with the Global Solar Energy Estimator model [10], which uses
an indirect irradiance estimation based on Ridley et al. [36] and a
PV performance model based on Huld et al. [37] to simulate PV
production from southwards facing panels tilted at 35 degrees in
each onshore MERRA grid point. Demand data from National Grid
for the years 2002–2013 are included, based on 30-min National
Grid data [38], and disaggregated spatially into the model zones
by using total annual demand data per local authority and assign-
ing each local authority to one of the 20 zones. This assumes that
demand shape is the same in each zone. For years before 2002,
where no demand data is available, 2002 data is used. The com-
plete model code and data are made available online (see supple-
mentary material).

3.2. Methods to reduce time resolution

For the work presented here, the Calliope framework was
extended with implementations of all the time resolution reduc-
tion methods compared. Time series data is stored at 1-hourly res-
olution, and any adjustments are performed in-memory based on
specifications in Calliope’s model configuration before the model
is solved. This makes it possible to reproduce the changes made
to input data and to adjust those changes for future model runs
without losing the higher detail contained in the input data. Table 2
gives an overview of the different approaches used to reduce time
resolution. The most simple approach is downsampling, where the
entire time series is simply downsampled to a lower resolution
(e.g. from 1-hourly to 3-hourly). Heuristic selection is the selection
of days or full calendar weeks based on criteria such as the week
containing the maximum or minimum daily average for the given
time series, or the relative difference between time series being
maximal or minimal. Two clustering methods are compared: hier-
archical and k-means clustering, described in more detail below.

These methods are combined in various ways to yield a total of
42 time resolution reduction approaches, some of which are single
methods, others a combination of multiple methods. A full list of
the approaches and their parameters is given in Table 3. These
approaches are chosen to test a wide range of methods on the same
model. They are assessed for their ability to deliver accurate results
with as few time steps as possible. The process of applying any of
the 42 approaches is as follows. Before applying clustering or any
of the heuristic methods, time series are normalized by the maxi-
mum value across all time steps and model zones (for downsam-
pling, no normalization is performed). If a heuristic selection is
applied, the remaining (unchosen by the heuristic) data can be
either removed, downsampled or clustered, depending on the con-
figuration of the chosen approach. The clustering methods are
described below. After applying downsampling, heuristic selection,
clustering, or a combination of these, a weight is determined for
each remaining time step according to the number of original time
steps it represents (i.e. a downsampled 6-hourly time step gets a
weight of 6). The final time series is then re-scaled to match the
mean of the original time series. This overall approach is similar
to that presented in Nahmmacher et al. [14].

Two clustering methods are compared. The first is hierarchical
clustering using Ward’s method as in Nahmmacher et al. [14].
The clustering algorithm determines clusters by recursively start-
ing to group observations together based on Euclidian distance,
stopping once a pre-determined maximum distance or a pre-
determined number of clusters is reached. For this study, it is
always the number of clusters that was fixed, as outlined below,
and to match the same number of clusters as used for the second
clustering method, k-means. Clustering with k-means also uses
Euclidian distance, but with a heuristic algorithm. To assess the
stability of clusters given the initial random selection of cluster
centers in the k-means algorithm, the algorithm was run 1000
times for 5 clusters using hourly 2014 data. The resulting cluster
labeling was compared with the chance-adjusted Rand Index [39]
and Adjusted Mutual Information [40], both of which had a mean
of 0.90 and a standard deviation of 0.041 and 0.039 respectively,
suggesting that clustering is sufficiently stable.

Examining the sum of squared error (SSE) between the cluster
centroid and all cluster members as a function of the number of
clusters (the elbowmethod) to test 1–30 clusters on the 2014 data,
between 10 and 15 clusters was found to be the point where SSE



Table 3
Time resolution reduction methods used for single-year models.

Name Approach Num. Selection

Timesteps Downsampling 4 12, 6, 3, 1 h
k-means Clustering 8 Closest/mean; 5, 10, 15, 20 days
k-means - wind_offshore Clustering 6 Closest/mean; 5, 10, 15 days
Hierarchical Clustering 8 Closest/mean; 5, 10, 15, 20 days
Min/max solar and wind days Heuristic 1 Drop
Min/max solar and wind days – downsample Combination 3 Downsample 6 h, 12 h, 24 h
Min/max solar and wind days – kmeans Combination 4 Closest/mean; 5, 10 days
Min/max solar and wind days – Hierarchical Combination 4 Closest/mean; 5, 10 days
Min/max wind weeks Heuristic 1 Drop
Min/max wind and pv weeks Heuristic 1 Drop
Min/max wind-demand weeks Heuristic 1 Drop
Min/max wind-demand weeks – downsample Combination 1 12 h
Min/max wind-demand weeks – kmeans Combination 1 Mean; 10 days
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flattens off. 5, 10, 15, and 20 clusters were therefore selected for
the full analysis. In addition, the impact of the normalization used
was assessed by comparing load duration curves (LDCs) for 5, 10,
15, and 20 k-means-derived clusters for the 2014 data. An LDC is
a cumulative frequency diagram with an inverted x-axis, showing
the distribution over all time steps of capacity factors. Capacity fac-
tor is the ratio of power generation to hypothetical power genera-
tion if running at full nameplate capacity over a period of time, so a
wind capacity factor of 0.6 means that wind is generating at 60% of
its nameplate capacity. LDCs are often used in power system anal-
ysis to visually summarize the availability of a generation technol-
ogy over an entire year. The R-squared of the original, 1-hourly LDC
compared to non-normalized data was 0.64 (standard deviation
0.084), and 0.91 compared to normalized data (standard deviation
0.019), suggesting that normalization delivers significantly more
accurate clustering. To more fully judge the impact different
approaches to reduce time resolution have on model results, addi-
tional metrics are used below.

For both clustering approaches, the observations on which clus-
tering is performed are all time steps for a given day and across all
model regions, for four variables: onshore wind, offshore wind and
PV generation, and demand. That is, the Euclidean distance is
calculated by reshaping the data from a 3-dimensional time
steps � locations � variable matrix to a 2-dimensional days � n
matrix, where n contains time steps per day, locations, and vari-
ables. Furthermore, different numbers of clusters and two choices
for determining typical days are compared: cluster centroids
(means) or the real day closest to the cluster centroid, from all days
contained in a cluster. The closest real day is found by the minimal
Euclidian distance between each real day and the cluster centroid,
computed with the Frobenius matrix norm. Both clustering meth-
ods use their implementation in the SciPy Python package,2 and
the implementation of all time resolution reduction approaches is
available in the Calliope source code.3 To give an example, the
method labeled ‘‘min/max solar and wind days - kmeans - 10 days
- closest” would first pick the days with maximum and minimum
PV and wind generation (up to 4 days), then remove them from con-
sideration and apply k-means clustering to the remaining data,
grouping it into 10 clusters, then selecting the closest real days to
each cluster centroid, resulting in up to 10 additional days for a total
selection of up to 14 days.

3.3. Model runs and analyses performed

Table 3 lists all the compared time resolution reduction
approaches and the parameters used. In the case of the clustering
methods, the derivation of actual days is one parameter (either
2 www.scipy.org.
3 www.github.com/calliope-project/calliope.
by selecting cluster centroids/ mean values, labeled ‘‘mean”, or
selecting the day from within a given cluster that is closest to
the cluster centroid, labeled ‘‘closest”), and the number of clusters
to look for is the second parameter. The heuristic methods with
‘‘drop” in the selection column simply drop all non-selected time
steps, i.e. in the case of ‘‘min/max wind weeks”, all but the weeks
with maximum and minimum wind output are dropped.

First, to test the 42 approaches, each one is applied to a year
(2014) of hourly data, therefore simulated renewable generation
and reported demand data for that year are used. The resulting
models with reduced time resolution are run for three different
scenarios for each time resolution reduction approach. The three
scenarios are defined by varying the constraint that controls the
amount of variable renewable generation: (1) averaged over the
entire modeled time period, a minimum of 50% of power must
be supplied from PV and wind (called the ‘‘50% renewable genera-
tion” scenario), (2) a minimum of 90% (‘‘90% renewable genera-
tion”), and (3) a minimum of 90% with the possibility of
deploying a large amount of battery storage (‘‘90% with storage”).
Unless in this last case, the primary means of balancing variable
renewables available to the model are deploying the generic dis-
patchable and baseload technologies. The deliberate lack of options
to balance variable renewable output means that these scenarios
are difficult to achieve and result in high levelized system costs,
so they are not representative of real power system configurations,
but are useful test cases to compare the effect of time resolution on
models with both a 50% and 90% share of renewable power
generation.

Second, a smaller set of time resolution reduction methods is
applied to the full 25 years of data. Table 4 lists these eight
approaches. The number of clusters (days) selected is higher here
than in the methods applied to a single year only, in order to
attempt to capture inter-annual variability. In addition, a different
heuristic is used to select a single or two extreme days for each
year of data, such that a representation of all annual extremes is
available. ‘‘Extreme days” here means for each of wind generation,
PV generation and power demand, the day per year with the max-
imum and the minimum mean value.

The primary goal when reducing time resolution is to improve
computational tractability of the model, while retaining as much
detail as possible. The metric for computational tractability is the
number of time steps. The CPU time required to solve a model is
also compared. As it is machine and solver dependent, it is normal-
ized by the maximum CPU time over all runs. The metrics for
examining the performance of a method are the percent deviation
from the reference (1-hourly) model of system-wide LCOE and of
installed technology capacities. In addition, the efficiency of an
approach is determined by 1=ðnt � absðCÞÞ, where nt is the number
of time steps and C is the relative deviation of LCOE from the
1-hourly reference case. The efficiency is used to rank all time

http://www.scipy.org
http://www.github.com/calliope-project/calliope


Table 4
Time resolution reduction methods used for the full 25 years of data.

Approach Days Selection

k-means 100 Closest
k-means 100 Mean
Hierarchical 100 Closest
Hierarchical 100 Mean
k-means 50 Closest
k-means – single extreme days 50 Closest
k-means – annual extreme days 50 Closest
k-means – 2 annual extreme days 10 Closest
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resolution methods compared, and to choose the five most efficient
ones for further inspection in the sections below. Other measures
to assess the stability and suitability of clustering are possible,
for example information-theoretic ones e.g.; [41]. However, here
we want to look primarily at the optimization model outcomes,
since those are the quantities of interest.

4. Results

4.1. Time resolution impact on model results

4.1.1. Downsampling
We first examine uniform downsampling of the input time ser-

ies to 3-hourly, 6-hourly, 12-hourly and 24-hourly time steps, for
the year 2014. Fig. 2 compares the effect of this downsampling
on CPU time required to solve a given model, and the resulting
optimal wind generation capacity. CPU time is normalized by the
maximum reported CPU time since the absolute time is
computer-dependent. The figure shows a significant reduction in
normalized CPU time with each reduction of time resolution. The
reduction in CPU time is most noticeable in the ‘‘90% with storage”
scenario, since that model has more complex constraints with
respect to time by including storage charging and discharging.
Time resolution influences the system configuration found by the
model considerably, as seen in the figure by the amount of
installed offshore wind capacity. Since the optimization finds min-
imal cost configuration and is forced to match supply with
demand, averaging renewable generation and demand time series
over ever longer time periods results in lower installed capacities.
This is because as demand peaks and production troughs are
smoothed, it becomes easier for the model to fulfill the balancing
constraint. The availability of storage in the system in the ‘‘90%
with storage” scenario reduces the difference in installed wind
capacity between time resolutions, since the smoothing of output
and demand fluctuations now take place through storage. These
results are a first indication that the appropriate method to reduce
time resolution depends heavily on the model setup and con-
straints used.

One issue with downsampling of input data is the loss of intra-
time step variability, which, as Fig. 2 shows, has a particularly
strong effect on results from models with high shares of variable
renewable generation but little storage. Fig. 3 compares model
results from a 6-hourly and a 1-hourly run, for the first seven days
in June 2014. Since the model used optimizes both plant deploy-
ment and dispatch simultaneously, the loss of detail through
smoothing of peaks and troughs (for example on June 5th) can
strongly affect model results. The loss of detail seen in this figure
explains why downsampling the input data leads to a reduction
of installed capacity in the ‘‘90% renewable generation” scenario.
It removes the need for peaking capacity during particularly non-
windy or non-sunny hours, since they are simply smoothed out
in the time series. This effect is not as strong in the ‘‘50% renewable
generation” case given that 50% of demand is covered by non-
variable generation.
4.1.2. Clustering and heuristic selection
We now examine more complex methods to reduce time reso-

lution and whether they can offset some of the undesirable side
effects of downsampling. We first examine the effect these meth-
ods have on the structure of the demand and wind/PV generation
time series for 2014 data, by using LDCs and the correlation
between wind and PV. Table 5 shows the configurations we ana-
lyze more closely: the two methods with the highest efficiency
(labeled 1 and 2, both combinations of individual methods), a k-
means and a hierarchical clustering method for comparison
(labeled 3, 4), and 6-hourly downsampling (labeled 5). Table S1
in the supplementary material contains the full list of all tested
approaches. The efficiency measure used to select methods 1 and
2 is as defined in the methods section: the inverse of number of
time steps multiplied by the relative deviation of model-reported
LCOE from the 1-hourly reference case, in other words, a measure
of how well a time resolution reduction method can approximate
the 1-hourly reference case with as few time steps as possible.
The selection of the most efficient methods will be discussed in
more detail in the next section.

Fig. 4 shows load duration curves for offshore wind and PV for
1-hourly 2014 data, for the five methods listed in Table 5. The
actual time series always contain less than 8760 time steps, but
to draw the figure, each clustered time step gets replicated along
the x-axis according to how many actual time steps it represents.
Uniform downsampling of the time series to 6 h does not substan-
tially affect the shape of the load duration curve for wind, whereas
for PV, a 6-hourly resolution is insufficient to capture the diurnal
solar cycle. The shape of the PV load duration curve is therefore
skewed towards more hours with lower capacity factors.

Similarly, different time resolution reductionmethods affect the
shape of the load duration curve by emphasizing certain parts of it
over others depending on the criteria used to choose the time
steps. The method labeled number 2 in the figure (‘‘min/max
wind-demand weeks - drop”) picks the weeks with the minimum
and maximum difference between wind power output and
demand, but it does not replicate the LDC of PV well. The extreme
ends of the load duration curve are of potential interest as they
represent periods of very low or very high production. For the wind
time series, both the k-means and hierarchical clustering
approaches (labeled 3 and 4) flatten the LDCs substantially, that
is, they remove much of the extremes and skew the LDC towards
the average. In the case of PV, the LDCs from k-means and hierar-
chical clustering generally lead to an overprediction of PV capacity
factors throughout the curve. The figure also shows that the some
of the methods considered here skew the correlation between
wind and PV generation quite significantly compared to the origi-
nal 1-hourly data (shown in black).

4.1.3. Model results and efficiency of different approaches
Above (Fig. 4), the method with the highest efficiency is a com-

bination of selecting extreme days heuristically and clustering the
remaining time periods (labeled 1 in the figure). Because this
method represents LDCs and the PV-wind correlation worse than
other methods, it is necessary to compare model results to judge
the performance of different approaches.

Two model results are of particular interest: the deployed
capacity of key technologies and the levelized cost of electricity
(LCOE). Fig. 5a shows the installed capacity across the three differ-
ent scenarios, for all 42 examined time reduction methods. As
above, these results are from the 2014 model. Three key technolo-
gies are shown: offshore wind, PV, and the dispatchable fossil tech-
nology. We see that the range of installed capacities for offshore
wind ranges from just above 40–170 GW. It should be noted that
a small number of time resolution reduction approaches result in
more wind capacity than the 1-hourly reference case (shown with



Fig. 2. Normalized CPU time and installed offshore wind capacity from 2014 runs with uniformly downsampled time resolution. On the machine used, the 1-hourly run
(maximum run time) took about 7.2 h. All CPU times are normalized by dividing by that value.

Fig. 3. Comparison of plant dispatch decisions from model runs with different time resolutions. (a) 6-hourly, (b) 1-hourly.

Table 5
Compared time resolution reduction methods. Normalized CPU time is given in % of
the CPU time for the full 1-hourly reference model.

Method Time
steps

Norm. CPU
Time

1 Min/max solar and wind days – kmeans –
10 days – closest

336 1.97

2 Min/max wind-demand weeks – drop 168 1.15
3 k-means – 10 days – mean 240 1.64
4 Hierarchical – 10 days – closest 216 1.27
5 6 h timesteps 1460 8.40
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the thick line). In the case of PV capacity, this effect is even more
noticeable. These are methods that choose extreme days only
and disregard the rest of the time series data. If we run a capacity
deployment model for only days with extreme wind conditions,
the model may well deploy substantially more wind generation
than necessary. Thus, these methods are simply not useful in prac-
tice when modeling very high shares of variable renewable
generation.

Fig. 5b shows the system-wide LCOE (generation-weighted
average LCOE across technologies) computed by the 2014 model.



Fig. 4. Accuracy of load duration curves (LDC) after applying different time resolution reduction methods. (a) LDC for PV generation. (b) LDC for offshore wind generation. (c)
Correlation between PV and wind capacity factors.
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The LCOE range is significantly smaller for the ‘‘50% renewable
generation” scenario. This is because in this scenario, the compar-
atively low share of variable renewable generation and conversely
the higher share of dispatchable generation means that weather
events, particularly extreme events for either wind or PV genera-
tion, have a lesser effect on the optimal model solution. The choice
of time step resolution reduction method therefore plays a lesser
role, and the range of results is narrower. Allowing for additional
storage capacity in the ‘‘90% with storage” scenario also reduces
the range of costs, by providing an alternate means for balancing
variable generation and thus also reducing the importance of
weather variability for the model solution. Overall, it appears that
the method to reduce time resolution is of less importance unless
very high shares (on the order of 90%) of variable renewables are
modeled with little backup or balancing possibilities.

From amongst the complete 42 methods, we now select those
five time resolution adjustment methods with the highest effi-
ciency (as defined in the methods section) when applied to the
2014 model. Table 6 shows these methods. The two topmost have
already been used in the above section when examining LDCs and
correlation between wind and PV. A similar table with results for
all examined methods and for the ‘‘50% renewable generation”
and ‘‘90% with storage” scenarios can be found in the supplemen-
tary material in Tables S2–S4. While Fig. 5 showed that some of the
42 methods perform inadequately on the accuracy of both installed
capacities and levelized costs, Table 6 shows that certain
approaches can achieve values very close to the 1-hourly reference
case even with an order of magnitude fewer time steps. These
results suggest a high time resolution is important for models that
analyze systems with high shares of variable renewable genera-
tion. However while there is a trade-off between accuracy and
the number of time steps in the model, the relationship is not lin-
ear. Significant model complexity gains can be made by careful
selection of time steps while still retaining high accuracy in the
results.

4.2. Inter-annual variability

4.2.1. Variability of wind and PV generation
Examining the results from just a single year leaves open the

question of whether a method proven as most viable in that single
year is equally suitable for other years. Fig. 6 shows the inter-
annual variability from 25 years of PV and wind simulations for
the UK, from the simulated data used for the model runs presented
here. There are seasonal trends for both wind and PV generation,
but also considerable inter-annual variability. A sunny day in win-
ter can be almost as productive for PV output across the UK as a
cloudy day in summer. The average UK wind capacity factor can
range from close to zero to almost one on the same calendar day
across the 25 years of simulations shown. This implies an inade-
quacy in using merely a single year of data. When examining mul-
tiple years of data and time series longer than a single year, two
distinct problems emerge. The first is a modeling problem and
requires the application of the time resolution reduction



Fig. 5. Installed capacities and system-wide LCOEs for 2014 model runs. The thick line shows the reference model run (full 1-hourly data). The box spans the .25–.75
percentile and the white line in the box is the median.

Table 6
Relative difference in percentage points to the reference case (1-h, or full dispatch model), for system-wide LCOE and for offshore wind capacity deployment, for the year 2014
model and the ”90% renewable generation” scenario. Results in 1-hourly reference case are: LCOE = 0.18 GBP/kW h, offshore wind capacity = 41.8 GW.

LCOE (% diff.) Wind cap. (% diff.) Time steps Efficiency

Min/max solar and wind days – kmeans – 10 days – closest �0.2 �10.6 336 1.32
Min/max wind-demand weeks – drop 0.6 19.2 168 0.98
Min/max solar and wind days – kmeans – 5 days – mean 2.3 �1.0 264 0.16
Min/max solar and wind days – hierarchical – 5 days – mean 3.5 �0.1 264 0.11
Min/max solar and wind days – drop �8.1 �14.6 144 0.09
6 h timesteps �3.4 �4.4 1460 0.02
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approaches described above to more than a single year of data. The
second is a planning and policy problem. Despite the inter-year
variability in the renewable resource, power systems with high
shares of variable renewables will likely become a reality, so
energy modelers must propose solutions for their stable operation.

4.2.2. Variability impact on time resolution reduction methods
To examine the modeling problem, Fig. 7 shows the percent

deviation from the one-hourly reference model runs for the
system-wide LCOE, for three different time resolution reduction
methods, over five years of model runs. A negative deviationmeans
that the method is underestimating the LCOE relative to the 1-
hourly model runs. The three methods were chosen to illustrate
the wide range of behavior as follows. Method A (min/max solar
and wind days - downsample 6 h) shows the lowest mean absolute
LCOE error across the five years, method B (min/max wind-demand
weeks - drop) has the highest mean efficiency across years, and
method C (k-means - 5 days - closest) is chosen as an illustrative
example of an approach with clustering only. This last approach
does well in some years, but leads to substantial errors in other
years. Thus, by validating a clustering method based on just a sin-
gle year of data, one may erroneously conclude that it is more
robust than it really is. Method A (min/max solar and wind days
- downsample 6 h) performs relatively consistently across all five
years, most likely because it heuristically selects the extreme
events that drive model results. However, this method is quite
far from being efficient: it requires 1580 time steps. Method B,
with only 168 time steps, is substantially more efficient computa-
tionally, but does not show the same consistent behavior over the
five years compared.

If we repeat the analysis shown in Table 6 above for the year
2012, as shown in Table 7, the resulting list of approaches is differ-
ent. However, a consistent pattern is that methods with heuristic
selection of the maximum and minimum solar and wind days
(‘‘min/max solar and wind days”) are amongst those that work
best.

4.2.3. Model planning results over multiple decades
The variability of input data across multiple years translates

into significant differences in model results. Fig. 8 shows the range
of installed generation capacities when running single-year models
for each of the 25 years, for the ‘‘90% renewable generation” and
the ‘‘90% with storage” scenarios. The considerable range of
installed capacities casts doubt on model results using only a single



Fig. 6. Inter-annual variability of daily capacity factors from 1990 to 2014. (a) PV. (b) Offshore wind. The black line shows median daily capacity factors for each day of year
from the 25 years of hourly data used in this study, while the shaded areas indicate their possible range over those 25 years.

Fig. 7. LCOE variability across five years when applying three time resolution
adjustment methods. A: min/max solar and wind days - downsample 6 h, B:
min/max wind-demand weeks – drop, C: k-means – 5 days – closest.
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or a small number of years of data. While allowing additional stor-
age (Fig. 8b) reduces the absolute capacity as well as the range
somewhat by providing an option to balance weather variability,
the model results still show a considerable range of capacity.

Fig. 9 shows installed offshore wind and PV capacities from
each of the 25 years separately, for the ‘‘90% renewable generation”
scenario, sorted by wind capacity. Wind capacity is relatively
equally distributed throughout the range spanned by the 25 years.
The year 1991 could be considered an outlier, and discarded as an
exceptional extreme condition, or it could be considered a condi-
tion that energy planning needs to address. Even when discarding
this outlier, the remaining years span a 30 GW range of difference
in installed capacity however. By breaking out installed offshore
wind capacity into the different model zones, across the 25 years,
as seen in Fig. 10, we see that this variability stems from only a
few model locations. For robust capacity planning, therefore, these
locations in particular would be of interest.

Finally, we examine the results from applying different time
resolution reduction methods to the full 25 year time series (see
Table 4 for the methods used for this). Fig. 11 shows the results
in a similar manner as the boxplots of deployed capacity above,
but additionally showing as dots the individual results contained
within the boxplots. The range of installed generation capacities
is even larger than the range from running individual years, which
would be expected given that some of the time resolution reduc-
tion methods specifically select (and thus focus on) extreme events
from the data. For the purposes of robust capacity planning in the
face of inter-annual variability, this could imply that certain
approaches to selecting time steps are suitable to determine a
‘‘mean” system design across all years. However, there is also the
question of weighting the rarer extreme events. By having too high
a weight, they will skew model results towards overcapacity.
Which of the resulting capacities is ‘‘true” is not a straightforward
determination, and these results also do not give a clear answer to
the question of how an energy model can determine a robust plan-
ning approach in the face of inter-annual variability whilst also
working with a reduced set of time steps drawn from a longer time
series.

5. Discussion and conclusion

This paper has compared different methods to reduce the time
resolution of energy model input time series, and assessed their



Fig. 8. Variability in model results for installed capacity from the 25 yearly model runs. This variability in results is driven by wind and PV variability in the input data. The
box spans the .25–.75 percentile and the white line in the box is the median.

Fig. 9. Offshore wind and PV capacity model results for each of the 25 annual runs, sorted by offshore wind capacity.

Table 7
Relative difference in percentage points to the reference case (1-h, or full dispatch model), for system-wide LCOE and for offshore wind capacity deployment, for the year 2012
model and the ”90% renewable generation” scenario. Results in 1-hourly reference case are: LCOE = 0.19 GBP/kW h, offshore wind capacity = 55.9 GW.

LCOE (% diff.) Wind cap. (% diff.) Timesteps Efficiency

Min/max solar and wind days – hierarchical – 5 days – closest 0.1 �4.2 264 3.53
Min/max solar and wind days – kmeans – 5 days – closest 1.3 �1.8 264 0.29
k-means – 10 days – closest �3.5 �0.4 144 0.20
Hierarchical – 15 days – closest 4.8 6.4 240 0.09
Min/max solar and wind days - hierarchical – 5 days – mean �5.4 �8.3 264 0.07
6 h timesteps �5.0 �6.2 1464 0.01
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effect on the outputs from a power system planning model for
Great Britain. The results show that different methods, including
downsampling, heuristic selection of time steps, and clustering,
lead to substantially different model results, in particular when
modeling high shares of variable renewable generation.
Approaches including heuristic methods appear to be more stable
when applied across different models of individual years, and may
therefore be preferable for those with high shares of variable
renewables. In the ‘‘50% renewable generation” scenario (with a
constraint that at least 50% of total generation over the entire mod-
eled period must come from wind and PV), model results still
showed acceptable accuracy at resolutions of 6-hourly and lower,
when comparing to the reference 1-hourly model.

The ‘‘90% renewable generation” scenario substantially
increased the difference in results between different amounts of
time steps and time resolution reduction methods. This under-
scores that modeling renewables adequately requires high resolu-
tion input data, but also that documenting the processing steps



Fig. 10. Offshore wind capacity by zone, for each of the 25 annual model runs. Crosses are yearly model decisions, dots are the mean across all 25 years.

Fig. 11. Variability in model results for installed capacity over the different time
resolution adjustment methods applied to the full 25 years of time series data. Dots
are the individual model results aggregated into the boxplots.
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applied to this input data in the course of any given analysis is
important to understand and evaluate model results. Results per-
taining to installed capacity requirements, levelized costs and the
overall feasibility of certain power or energy system configura-
tions, should be used with caution when high shares of renewables
are modeled with time resolutions much below 1-hourly or with
only a small number of typical days. Giving a model additional
inter-time step balancing opportunities like storage further
decreases the optimization’s computational tractability, but it also
reduces the importance of high time resolution. Overall, the results
suggest that the appropriate method with which to reduce the
number of time steps in a model depends on the model setup.
Rather than falling back on the same method for all model runs,
studies should therefore include justification for why a specific
approach was chosen and validate that method for their specific
model configuration.

The situation is further complicated by the substantial
inter-annual variability in wind and PV power output. This variabil-
ity results in the need to use not just a single year (for example, a
typical meteorological year) but as long a time series as possible,
ideally several decades. The resulting modeling problem is how
to deal with the increased amount of data while maintaining com-
putational tractability. It is also a planning problem, since it
involves the question of how much variable generation capacity
to build, and where, to deal with this variability. Furthermore, it
entails setting criteria to apply for acceptable levels of supply secu-
rity and system stability. These security and stability requirements
are influenced by the variability of renewable generation and the
availability and cost of backup and balancing options for variable
renewables. Assessing them therefore requires that model results
not be distorted by inaccurate time series data. For all these rea-
sons, there is the need for further research into how to integrate
multi-decade time series of renewable generation into energy plan-
ning models, so that they in turn can help plan for secure and
affordable energy systems with high shares of variable generation.

The work presented here has several limitations. The optimiza-
tion model used is a simplified one and does not therefore lead
directly to real-world planning insights. The resulting levelized
costs, for example, for the ‘‘90% renewable generation” and ‘‘90%
with storage” scenarios, should not be interpreted as representa-
tive of the costs of real power systems, but are used to compare
the relative differences between a model run with different time
step configurations. Furthermore, the relevance of spatial detail is
not further examined in this work. Temporal resolution is impor-
tant for the balancing of supply and demand and for depicting
the variability of wind and PV. Spatial resolution allows a model
to capture dynamics such as a weather system moving across a
country and the impact this has on variable renewable generation
in different model locations. Depending on a model’s purpose – for
example, examining decentralized generation – higher spatial res-
olution may be of crucial importance. The analyses performed here
cannot quantify the effect of spatial resolution or its relative
importance compared to temporal resolution, so this is another
avenue for future work.

This study has assessed methods to address time resolution sys-
tematically, extending knowledge on what methods are appropri-
ate and where, and underscoring the fact that published results
based on models should always carefully specify what adjustments
were made to the time series data. The methods and data are freely
available to build upon. This makes it possible for other modelers
to easily adapt or extend the approaches presented here, and apply
them to their own models and data. The results suggest that while
heuristic approaches appear promising, there is no one-size-fits-all
approach to reduce time resolution while also covering long-term
variability. However given the rising importance of variable renew-
able generation, there is both a need and ample room for more
research on these problems.
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